Frequenzkämme

Gudrun Thäter traf sich im Rahmen ihres Modellansatz Podcast zum Gespräch mit Janina Gärtner. Janina hat gerade ihre Promotion mit dem Titel “Continuation and Bifurcation of Frequency Combs Modeled by the Lugiato-Lefever Equation” abgeschlossen. Die Arbeit war Teil der Forschung im SFB 1173: Wellenphänomene und ist interdisziplinär zwischen Mathematik und Elektrotechnik entstanden.

Der Modellansatz: Frequenzkämme, Visualisierung: J. Gärtner, Komposition: S. Ritterbusch

Janina hat ein Lehramtsstudium Mathematik/Physik am KIT absolviert. Als sie sich für ihre Zulassungsarbeit mit einem mathematischen Thema auseinandergesetzt hat, bekam sie Lust, die mathematische Seite ihrer Ausbildung zum Master Mathematik zu vervollständigen. Anschließend hat sie eine Promotionsstelle in der KIT-Fakultät für Mathematik angenommen, wo sie auch im Schülerlabor Mathematik tätig war.

Im Zentrum von Janinas Arbeit stehen Frequenzkämme, die analytisch und
numerisch untersucht wurden. Gerade an den numerisch bestimmten Fällen war die Arbeitsgruppe in der E-Technik besonders interessiert.

 

Frequenzkämme sind optische Signale, die aus vielen Frequenzen bestehen und mehrere Oktaven überspannen können. Sie entstehen beispielsweise indem monochromatisches Laserlicht in einen Ringresonator eingekoppelt wird und die resonanten Moden des Ringresonators angeregt werden. Durch Mischung und aufgrund des nichtlinearen Kerr-Effekts des Resonatormaterials werden Frequenzkämme mit unterschiedlichen Eigenschaften erzeugt. Die mathematische Beschreibung des elektrischen Feldes innerhalb des Ringresonators erfolgt durch die Lugiato-Lefever Gleichung.

Von besonderem Interesse sind dabei Solitonen-Kerrkämme, die aus im Resonator umlaufenden zeitlich und räumlich stark lokalisierten Solitonen-Impulsen entstehen. Solitonen-Kerrkämme zeichnen sich durch eine hohe Zahl an Kammlinien und damit eine große optische Bandbreite, durch geringes Phasenrauschen und durch eine hohe Robustheit aus.

Durch numerische Simulationen konnte Janina heuristische Schlussfolgerungen ziehen und die im Zeitbereich am stärksten lokalisierten Frequenzkämme bestimmen. Damit übertrug sie ihre analytischen Ergebnisse in den anwendungsorientierten
Bereich des Projektes.

Wer das Gespräch anhören möchte, findet es hier.

Leave a Reply

Your email address will not be published. Required fields are marked *